

Blotech

Goran Mauša^{1,2,3} Erik Otović^{1,3} Marko Njirjak^{1,3} Ivan Erjavac¹ Daniela Kalafatovic^{2,3,4}

¹ University of Rijeka, Faculty of Engineering, Department of Computing, Vukovarska 58, 51000 Rijeka, Croatia
 ² University of Rijeka, Center for Advanced Computing and Modeling, Radmile Matejčić 2, 51000 Rijeka, Croatia
 ³ University of Rijeka, Center for Artificial Intelligence and Cybersecurity, , Radmile Matejčić 2, 51000 Rijeka, Croatia
 ⁴ University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, 51000 Rijeka, Croatia

Soft Computing	Project goals	Publications (2022)
 Soft computing is a set of probabilistic algorithms robust to imprecision and tolerant to uncertainty, enable us to grapple with analytically intractable problems, make up for the lack of theoretical knowledge. 	 In our project we tackle the problems of: 1 Sensivity of highly accurate predictive models [1], 2 Informative representation schemes for peptides [2], 2 Metif identification in accurate composition patterns [2]. 	 [1] I. Erjavac, D. Kalafatovic, G. Mauša. Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?, Artificial Intelligence in the Life Sciences, Vol. 2, 100034 [2] E. Otović, M. Njirjak, D. Kalafatovic, G. Mauša. Sequential Properties Representation Scheme for Recurrent Neural Network-Based Prediction of Therapeutic Peptides, Journal of Chemical Information and Modeling, Vol. 62, 12, pp. 2961–2972 [3] M. Babić, P. Janković, S. Marchesan, G. Mauša, D. Kalafatovic, Esterase
 We apply a wide range of soft computing models to: predict peptide activity, 	 4 Building predictive models with low amount of available data, 5 Interpretability of neural network-based classifiers, 	

construct novel peptides,
cover the chemical search space.

6 Ability to generate new peptide sequences,
7 Coverage-based parallel exploration of chemical space.

Sequence Composition Patterns for the Identification of Catalytic Triad Microenvironment Motifs, Journal of Chemical Information and Modeling

This project is supported by: Design of Short Peptides (DeShPet) Team Conclusion Artificial intelligence is changing the concepts of discovery Soft computing offers insight into sequence – function relationship www.deshpetlab.uniri.hr web: STREET LAB • We envision these strategies will expedite peptide research web app: www.deshpet.riteh.hr **Croatian Science** Large and complex search space impossible to analyze manually deshpet@riteh.hr e-mail: Foundation Unbiased search may help discover unexplored regions **UIP-2019-04-7999** uniri-pr-tehnic-19-10 Prediction models are not to be taken for granted